Pre-analysis Plans: An Early Stocktaking *

George K. Ofosu† Daniel N. Posner‡

December 09, 2020

Abstract

Pre-analysis plans (PAPs) have been championed as a solution to the problem of research credibility, but without any evidence that PAPs actually bolster the credibility of research. We analyze a representative sample of 195 PAPs registered on the Evidence in Governance and Politics (EGAP) and American Economic Association (AEA) registration platforms to assess whether PAPs registered in the early days of pre-registration (2011-2016) were sufficiently clear, precise and comprehensive to achieve their objective of preventing “fishing” and reducing the scope for post-hoc adjustment of research hypotheses. We also analyze a subset of 93 PAPs from projects that resulted in publicly available papers to ascertain how faithfully they adhere to their pre-registered specifications and hypotheses. We find significant variation in the extent to which PAPs registered during this period accomplished the goals they were designed to achieve. We discuss these findings in light of both the costs and benefits of pre-registration, showing how our results speak to the various arguments that have been made in support of and against PAPs. We also highlight the norms and institutions that will need to be strengthened to augment the power of PAPs to improve research credibility and to create incentives for researchers to invest in both producing and policing them.

*The authors thank Maxim Ananyev and Merabi Chkhenkeli for excellent research assistance, and Graeme Blair, Ashley Blum, Alex Coppock, Steven Glazerman, Donald Green, Macartan Humphreys, Matt Lisiecki, and David McKenzie, as well as seminar participants at EGAP, Oxford, and Berkeley, and four anonymous reviewers for valuable comments. The authors gratefully acknowledge funding from the Social Science Meta-Analysis and Research Transparency (SSMART) program of the Berkeley Initiative for Transparency in the Social Science (BITSS). The survey of researchers who register pre-analysis plans, which provides some of the data reported in the paper, was determined to be exempt from IRB review (UCLA IRB # 19-000063). We registered our study at the Open Science Framework (OSF) registry:https://osf.io/xrtqm/.

†Department of Government, London School of Economics and Political Science, Email: g.ofosu@lse.ac.uk

‡Department of Political Science, University of California, Los Angeles. Email: dposner@polisci.ucla.edu
1 Introduction

Pre-analysis plans (PAPs), public documents that specify in advance the hypotheses a researcher will investigate and how the data will be collected and analyzed, have been championed as an important tool for addressing the problem of research credibility in the social sciences (Ioannidis, 2005; Franco, Malhotra and Simonovits, 2014; Simonsohn, Nelson and Simmons, 2014; Open Science Collaboration, 2015; Christensen, Freese and Miguel, 2019). As shown in Figure 1, which displays the number of PAPs registered on the Evidence in Governance and Politics (EGAP) and American Economic Association (AEA) registries since 2011, their numbers have skyrocketed in recent years. Graduate students are now taught that registering a PAP is a de rigeur part of undertaking their research projects.

PAPs are advocated for two main reasons. First, they prevent “fishing” (also referred to as “p-hacking” or “data mining”). Fishing is the practice of selectively reporting, from among the many possible results that might be generated from a given set of data, the subset of findings that are statistically significant, novel, or allow the researcher to tell a cleaner or more compelling story. PAPs solve this problem by specifying in advance exactly which econometric specifications, outcome variables, coding rules, covariates, sub-samples, and inclusion rules will be used to generate the results that will be presented as the definitive test of the research question. Specifying the key details of the analysis in advance reduces the “researcher degrees of freedom” (Simmons, Nelson and Simonsohn, 2011; Wicherts et al., 2016).

1PAPs are a special case of pre-registration, which involves publicly declaring one’s intention to undertake a study that investigates a particular hypothesis. PAPs go beyond pre-registration by also providing specific details about how the proposed analysis is to be undertaken.

2Our stocktaking focuses on patterns in political science and economics, and thus on the two major registries in these disciplines. Other prominent social science registries, whose contents we do not review, include the Registry for International Development Impact Evaluations (RIDIE), the Open Science Framework (OSF) Registry, and the website AsPredicted. In 2020, the EGAP Registry merged with the OSF Registry.

3An illuminating illustration of the scope for fishing within a real study is provided in Casey, Glennerster and Miguel (2012). For evidence of the prevalence of fishing in political science, see Gerber and Malhotra (2008); for economics, see Brodeur et al. (2016). For discussions of the incentives for researchers to present more striking results, see Elman, Kapiszewski and Lupia (2018), Nosek et al. (2018) and Laitin and Reich (2017).
2016) that provide latitude for consciously or unconsciously selecting particular specifications that make the results more striking.

Second, PAPs prevent hypothesizing after results are known (sometimes abbreviated as “HARK-ing”). HARKing involves interpreting results \textit{ex post} based on the results of the analysis rather than \textit{ex ante} based on expectations derived from theory. PAPs address this problem by specifying in advance which hypotheses a researcher is intending to test, thus preventing the researcher from succumbing to hindsight bias and emphasizing in the presentation of her findings the hypotheses that happened to find support in the data (Nosek et al., 2018). Registering research hypotheses in advance in a PAP need not prevent researchers from using their data to conduct exploratory research. Pre-registration simply clarifies which of the analyses presented in the paper are confirmatory (i.e., testing hypotheses specified before the results were known) and which should be treated as exploratory (i.e., products of learning and new hypothesis generation based on the patterns that emerged in the data). Both confirmatory and exploratory findings can be sources of insight, but the evidentiary status of each is quite different.

These two benefits of PAPs are clear and, for those committed to improving the credibility of social science research, compelling. But whether PAPs are actually achieving these goals in practice is
an empirical question—albeit an extremely challenging one to answer definitively.⁴ One cannot compare the degree of fishing and post-hoc hypothesis adjustment in studies implemented with and without PAPs because, absent a PAP, there is no record of the analyses or hypotheses that were pre-specified. And even if such a comparison were possible, the conclusions one could draw would be undermined by the fact that researchers self-select into whether they pre-register their analyses, and the researchers who file PAPs are quite likely different from those who do not. Moreover, even researchers who regularly file PAPs do not register them for all of their studies, so the lack of randomness in who pre-registers a PAP is compounded by within-researcher selection across projects.⁵

We therefore adopt a different approach. Rather than attempt to test whether PAPs cause research to be more credible, we ask whether PAPs are written and employed in a way that makes such an improvement in research credibility possible. To do this, we draw a representative sample of PAPs and analyze their contents to determine whether they are sufficiently clear, precise, and comprehensive as to meaningfully limit the scope for fishing and post-hoc hypothesis adjustment. We also assess whether PAPs do, in fact, tie researchers hands by comparing a subset of the PAPs we examine to the publicly available papers that report the findings of the investigations they pre-specified. These are, of course, subjective evaluations. But we have undertaken in our coding rules and our procedures to be both transparent and objective in the judgements we make.⁶ Our analysis provides an illuminating assessment of whether PAPs, as they are actually written and used, are able to accomplish the main objectives that have

⁴For a notable attempt to estimate the causal effect of registration in the medical field, see Fang, Gordon and Humphreys (2014).

⁵In our potential PAP users’ survey (discussed below) 78% of researchers said they had at least one ongoing research project for which they did not register a PAP.

⁶We did not, however, pre-register our analysis or any specific hypotheses, as we view this research a purely descriptive exercise.
motivated their widespread promotion and adoption. Our findings suggest that, in many cases, they are not.

The importance of such an assessment is rooted in the significant costs associated with writing and following a PAP (Olken, 2015; Coffman and Niederle, 2015; van’t Veer and Giner-Sorolla, 2016; Duflo et al., 2020). The modal researcher in our 2018 potential PAP users’ survey (discussed below) reports spending 2-4 weeks preparing her pre-registration materials, and more than a quarter of researchers report spending more than a month. Beyond the time they take to write, the hand-tying that PAPs entail is claimed to limit the scope for breakthroughs that come from unexpected findings, restrict flexibility to adapt to changing circumstances or new opportunities, and generate boring, mechanical papers that are disfavored by reviewers and journal editors. PAPs are also said to force researchers to undertake analyses that they know to be inappropriate or sub-optimal once they have encountered their data. In addition, critics point out that, whatever the benefits of pre-registration may be in theory, PAPs are unlikely to enhance research credibility without vigorous policing—something the disciplines provide little guidance for undertaking and generally do not reward (Laitin, 2013; Laitin and Reich, 2017). Still others argue that publicly posting the details of one’s proposed analyses creates a risk of getting “scooped.” This is especially a concern for junior scholars and other researchers who may lack the resources to quickly implement promising research designs.

While there are good responses to many of these objections (many of which we discuss below), they nonetheless underscore the importance of assessing how much weight should be put on the positive side of the pre-registration ledger. Doing so requires undertaking the stocktaking exercise we present here. We have summarized our findings so as to be accessible to members of the discipline who have heard about PAPs but are not familiar with the rationale behind them or the debates surrounding their usage. In this respect, the paper serves as both an introduction to this important (relatively) new research practice and as an empirical evaluation of whether it is achieving its desired ends. Because this stock-

7 Oceno and Woods (2019) provide a similar stocktaking, coding PAPs in terms of the design features they mention. However, their study makes no effort to evaluate whether each of these features is presented sufficiently clearly or comprehensively to reduce the scope for fishing or post-hoc theorizing. Another analogous effort, involving the comparison of published and unpublished papers with the proposals that secured their funding, is provided in Franco, Malhotra and Simonovits (2014). For an analysis similar to our own in psychology, see Claesen et al. (2019).
taking covers only the first six years of PAP adoption, it provides clearer answers about the ability of the first generation of PAPs to reduce the scope for fishing and HARKing than about the clarity, precision, or completeness of PAPs registered in the last year or two. However, the discussion of the costs and benefits of pre-registration, along with the discussion of the complementary norms and institutions that might encourage and reinforce the positive impacts of registering a PAPs, remain highly relevant today.

2 Are PAPs achieving their objectives?

2.1 Empirical approach

To evaluate whether PAPs are written sufficiently clearly and comprehensively to achieve their intended objectives, we drew a representative sample of PAPs from the universe of studies registered on the EGAP and AEA registries between their initiation and 2016.8 Because we were interested not just in the PAPs’ contents but also in how those contents shaped the reporting of the research that was undertaken, we drew our sample so that roughly half of the PAPs would be from studies that had resulted in publicly available journal articles or working papers. Our procedures, which we describe in detail in the Appendix, yielded a sample of 195 PAPs, 93 of which had resulted in publicly available papers.

We coded all 195 PAPs according to a common rubric that recorded details of the hypotheses that were pre-specified, the dependent and independent variables that would be used in the analysis, the sampling strategy, inclusion and exclusion rules, and the statistical models to be run, among other features. For the sub-sample of 93 PAPs for which publicly available papers were available, we added further questions that addressed how faithfully the study authors adhered to the pre-specified details of the analysis in the resulting paper. The complete coding rubric for PAPs with papers is provided in Online Appendix C. All PAPs were coded by at least two different people—a research assistant and one of this paper’s authors—and any discrepancies between them were investigated and recoded.

8 Although the web forms that investigators complete when registering their studies on both of these sites provide opportunities for describing many details of the proposed research, including much of the information that ordinarily goes into a PAP, our analysis only includes studies for which a PAP was uploaded. To the extent that the information provided in PAPs is more complete than the information provided on registry web forms alone, our findings are likely to represent an upper bound on the hand-tying provided by pre-registration more generally.
Although much of the information collected in the coding rubric was straightforward and unambiguous—for example, whether the PAP was registered prior to data collection or whether it included a power analysis, committed to a multiple testing adjustment, or was ever private/gated—a number of the key coding items involved subjective judgements. Chief among these was whether the main research hypotheses and the key causal and outcome variables were specified sufficiently clearly as to prevent post-hoc adjustments. For the latter, our coding rules asked the coder to consider, following Olken (2015), whether “if you gave the PAP to two different programmers and asked each to prepare the data for the primary dependent/independent variable(s), they [would] both be able to do so without asking any questions, and they [would] both be able to get the same answer.” As for the clarity of the research hypotheses, we defined a “clear hypothesis” as one that describes a relationship between an independent and dependent variable in which the direction of the effect is specified.

In the discussion that follows, we occasionally draw on examples from the PAPs we analyzed to illustrate our points. When we do so, we change the details to protect the anonymity of the PAP authors. This is in keeping with our goal of identifying broad patterns in how PAPs are written and used, not singling out individual authors for particularly weak (or strong) practices.

We supplemented our coding of PAPs with an anonymous survey of potential PAP users to elicit their experiences with writing and using PAPs in their research. We were especially interested in collecting information about investigators’ decisions surrounding whether or not to pre-register a study and how the practice of composing and registering a PAP had changed the ways in which they went about their work, as well as how the rise of pre-registration affected their professional behavior more generally. The survey was conducted in 2018, so it captures a set of attitudes and behaviors closer to the present day than the patterns reflected in the PAPs we coded. The survey (reproduced in full in Online Appendix D) was sent to all affiliated researchers in the EGAP and Innovations for Poverty Action (IPA) research networks (N=664). We received 155 responses, of which 81% reported having registered a PAP for at least one project and 60% reported having registered multiple PAPs.

Before turning to our findings, it will be useful to say something about the sample of PAPs on which our stocktaking is based. The overwhelming majority of the 195 PAPs we coded were from field (63%), survey (27%), or lab (4%) experiments; observational studies comprised just 4% of our sample.
Eighty-one percent of PAPs were registered on the EGAP or AEA websites prior to data collection, and another 19% were registered after data collection but before the researchers had access to their data or began their analysis. Among the PAPs with papers, 66% were working papers and 33% were journal articles. In keeping with their share in the population of PAPs registered on the EGAP and AEA registries during the period we studied, and reflecting the rapid uptake of pre-registration during this time frame, 45% of the PAPs we coded were registered in 2016, the final year of our analysis. This imbalance (somewhat) allays concerns that the findings we present come from the very early period of PAP usage, when researchers were still just learning how to use PAPs as tools in their research. However, it is impossible to rule out that the patterns we find are different from those we would have discovered had we focused on the present day rather than the first six years of pre-registration.

2.2 Do PAPs reduce the scope for fishing?

Fishing is made possible by imprecise variable definitions and by lack of clarity about the statistical models that will be run, the covariates that will be included, and the rules that will be applied for excluding cases, among other details of the analysis that will be undertaken. The failure to clearly specify these aspects of the research design in advance provides scope for researchers to run their analyses multiple ways and then present as their “test” of the hypothesis in question the specification that happens to generate the most appealing results. This can happen either nefariously (by researchers searching for findings that they think are more likely to be published or bring them renown) or inadvertently via post-hoc rationalization (“Of course this was the right specification to run! Silly of me not to have seen this at the outset!”)—a skill at which human beings are dangerously accomplished (Nosek et al., 2018). Whatever the source, fishing undermines the credibility of the research findings by ignoring or down-

9 In the potential PAP users’ survey, several researchers said they hesitated to register PAPs for studies drawing on data that was, in principle, available to them prior to drafting the PAP, as there was no way to prove that they had not looked at the data. This may account for the lower share of studies registered after data collection had commenced.

10 In other work, we are coding a random sample of more recent PAPs with the objective of comparing patterns across the early and contemporary periods.

11 See Humphreys, De la Sierra and Van der Windt (2013) for a simulation-based exercise demonstrating the scope for generating erroneously significant results due to poor pre-specification of different aspects of the research design.
playing null/disconfirming results that, if reported, might provide a more accurate reflection of the true relationships in the area of study.

One of the key features we coded in our sample of PAPs was whether the primary dependent and independent/treatment variables were operationalized sufficiently clearly as to prevent post-hoc adjustments. Examples of lack of clarity include defining outcomes of interest in overly broad and unspecific terms—for example, “political participation,” “democratic consolidation,” or “educational attainment”—without specifying how these concepts are to be measured. Promising to “create an index” or do a “content analysis of programming” without specifying exactly how the index is to be constructed or the content analysis is to be undertaken offer other illustrations. None of these examples would pass the Olken test described above. These violations are relatively rare, however. In our sample of PAPs, 77% of primary dependent variables and 93% of independent/treatment variables were judged to have been clearly specified.12

PAP authors were less good, however, at clearly specifying their control variables. Many PAPs indicated the researchers’ intentions to “include baseline controls to improve precision” or to control for vaguely defined covariates such as “wealth,” “demographic characteristics,” “employment status,” or “cognitive ability.” While these variables may well be relevant to include, describing them in the PAP in such broad and non-specific terms leaves wide scope for fishing at the data analysis stage. Even when attempts are made to clarify how such variables are to be measured, the clarifications themselves are sometimes also problematic. For example, defining “wealth” as an index based on characteristics such as the condition of a respondent’s dwelling, asset ownership, or the number of days household members go without food still leaves broad latitude for subjectivity (which dwelling conditions? which specific assets? what if there is enough food for some family members but not others?) and fails the Olken test.

Lack of clarity in variable definition is not the only issue. In 44% of PAPs, the number of pre-specified control variables was judged to be unclear, making it nearly impossible to compare what was pre-registered with what is ultimately presented in the resulting paper. The flexibility stemming

12The high rate of clearly specified main independent variables stems from the fact that in most cases—90% in our sample—this variable was simply a treatment dummy whose details were unambiguous.
from such imprecision provides wide scope for generating results that might not otherwise have reached traditional levels of statistical significance.13

Further scope for fishing comes from imprecision in the empirical models that are pre-specified.14 Insofar as researchers can generate different results if they run their analyses using ordinary least squares, weighted least squares, multinomial logit, or other approaches, and with or without particular adjustments for calculating standard errors, it is critical to commit in advance to a particular statistical model. Sixty-eight percent of PAPs were judged to have spelled out the precise statistical model to be tested; 37% specified how they would estimate their standard errors. In 19% of cases, the models presented in the resulting papers deviated from the models specified in the PAP—for example, two stage least squares was run when ordinary least squares was pre-specified; controls were added or omitted; covariate adjustment was specified in the PAP but not undertaken in the paper. Such deviations are not a problem if they are noted and a rationale is provided for the divergence from what was pre-registered. However, in the fourteen instances in our sample where deviations occurred, the change was noted in only one case.

Additional latitude for specification searching comes from lack of clarity about the rules that researchers will apply to include or exclude units from their analyses and, in experimental work, to deal with unanticipated imbalances across treatment and control groups. Such rules are important because unforeseen implementation challenges—attrition, noncompliance, project delays, problems with randomization—often force researchers to make fixes at the analysis stage that can bias the results, intentionally or unintentionally, toward a particular conclusion. Twenty-five percent of PAPs specified how they would deal with missing values and/or attrition; 13% specified how they would deal with noncompliance; 8% specified how they would deal with outliers; and 20% specified how they would deal with covariate imbalances. It would appear that study authors are less careful about pre-specifying what they will do if their implementation does not go according to plan than they are about pre-specifying

13Lenz and Sahn (Forthcoming) find that 30-40% of observational studies report findings that depend on covariates to increase their effect sizes to the point where they cross the threshold of statistical significance, and that the authors of these studies almost never disclose that their results depend on the particular constellation of covariates they have chosen to include.

14The simulations in Humphreys, De la Sierra and Van der Windt (2013) suggest that discretion over model selection is not a major source of fishing opportunities. However, the test they report is for discretion over using linear, logit, or probit models for binary variables, and may not apply to other aspects of model choice in other applications.
other details of their proposed analysis. While all of the studies for which rules about missingness, non-compliance, and outliers were pre-specified followed them in the resulting papers, the fact that so many PAPs were silent on these issues underscores the incompleteness of most PAPs—and the opportunities that such omissions provide for researchers to tweak their analyses in ways that generate particular results.

The practical difficulties of pre-specifying responses to every possible implementation problem that might arise are severe. As Duflo et al. (2020) underscore, “trying to write a detailed PAP that covers all contingencies, especially the ones that are ex ante unlikely, becomes an extraordinarily costly enterprise.” One response to this problem is the adoption of standard operating procedures (SOPs)—a set of default practices adopted by a lab or research group to which study authors can commit in advance to guide decisions that are not addressed specifically in the PAP (Lin and Green, 2016). However, notwithstanding the utility (and time savings) that might come from committing to SOPs, just 3% of the PAPs in our sample indicated that they would rely on SOPs to deal with unanticipated deviations from their pre-registered designs.

2.3 Do PAPs reduce the scope for post-hoc hypothesis adjustment?

The clearest strategy for eliminating the scope for post-hoc hypothesis adjustment is to specify the research hypotheses in a way that leaves no ambiguity about the propositions that the analysis will test. In this respect, PAP authors in the sample we studied did quite well. Ninety percent of the PAPs we coded were judged to have specified clear hypotheses.

However, even clearly specified hypotheses can leave scope for HARKing if authors pre-specify so many hypotheses that they can pick and choose which ones to report after they have seen their results. In this respect, PAP authors fared less favorably. While 34% of PAPs specified between one and five hypotheses—a number sufficiently small as to limit the leeway for selective presentation of results downstream—18% specified between six and ten hypotheses; 18% specified between 11 and 20 hypotheses; 21% specified between 21 and 50 hypotheses; and 8% specified more than 50 hypotheses.
(see Figure 2, Panel A). PAPs that pre-specify so many hypotheses raise questions about the value of pre-registration.15

Figure 2: Number of pre-specified hypotheses

Panel A shows the distribution of the number of hypotheses pre-specified in the full sample of PAPs. Panel B limits the sample to the subset of PAPs that pre-specified more than 5 hypotheses and that distinguished between primary and secondary hypotheses.

One safeguard against this pitfall is to distinguish between primary and secondary hypotheses. Many PAPs adopt this protection: among authors who pre-specified more than five hypotheses, 60% make such a distinction. But they often do so in ways that do little to solve the underlying problem. As shown in Panel B of Figure 2, 42% of PAPs that distinguished between primary and secondary hy-

15Closely related to the number of hypotheses is the length of many PAPs. While the median PAP in our sample was 11 single-spaced pages, the longest 10 percent were more than 31 pages, and three were over 90 pages long. As an insightful reviewer points out, one reason why PAPs are so long and unwieldy is because, just as with academic papers, tightening and sharpening them is hard intellectual work. Under the current set of disciplinary incentives, many researchers feel they will get little payoff for investing in this effort.
hypotheses limited the number of primary hypotheses they specified to five or fewer. Twenty-six percent pre-specified 6-10 primary hypotheses; 12% pre-specified 11-20; 17% pre-specified 21-50; and 3% pre-specified more than 50. From the standpoint of reducing the scope for selective presentation of research findings, distinguishing between primary and secondary hypotheses is only useful if the number of primary hypotheses is kept small.

Another safeguard is to pre-commit to a multiple testing adjustment. Multiple testing adjustments down-weight the statistical significance of any single result based on the number of hypotheses that are being tested, thus guarding against the cherry-picking results in instances where there are many possible findings to choose from and the chances of generating a false positive are high. Among the PAPs in our sample that pre-specified more than five hypotheses, 28% pre-committed to a multiple testing adjustment.

Taken together, these practices leave significant leeway for authors to omit results that are null or that complicate the story they wish to tell. But do authors take advantage of this latitude in practice? To find out, we examined the sub-sample of 93 PAPs that had publicly available papers and compared the primary hypotheses pre-specified in the PAP with the hypotheses discussed in the paper and/or its appendices. We find that study authors faithfully presented the results of all their pre-registered primary hypotheses in their paper or its appendices in 61% of cases. More than a third of studies had at least one pre-registered hypotheses that was never reported. Taking primary and secondary hypotheses together, the median paper in our sample neglected to report 25% of the hypotheses that had been pre-specified in the PAP. To be sure, constraints on journal space, the desire to package a study’s results in a more readable form, and sometimes the requests of editors and/or reviewers, rather than unscrupulous research practice,

16Researchers will sometimes register a PAP for an entire project, intending that different parts of the project will be discussed in different papers. In such a situation, a single paper may only report a subset of the pre-registered hypotheses in the PAP. In undertaking our coding, we looked for language indicating that the paper was reporting only a subset of the pre-registered hypotheses, with others to be discussed in future work. We note, however, that, absent the careful pre-specification of which hypotheses will be presented in which papers, such situations create opportunities for selective presentation of results. It is impossible to know whether an author has cherry-picked the hypotheses to report in the “first” paper, never intending to (or not putting significant value on) dealing with the other hypotheses in follow-on paper—a within-study version of the “file drawer” problem discussed below.
likely accounts for many of the omitted hypotheses.17 But the frequency of the mismatch between what is pre-registered and what is presented undermines research credibility.

Apart from pre-registering hypotheses that are not reported in the paper, authors may also deviate from the PAP, sometimes in response to requests by reviewers, by reporting the results of hypotheses that were not pre-registered at all. We found that 18\% of the papers in our sample presented tests of novel hypotheses that were not pre-registered.18 Such deviations need not be a problem for research credibility if authors are transparent about the fact that the hypotheses were generated after the PAP was filed. But authors that presented results based on hypotheses that were not pre-registered failed to mention this in 82\% of cases.

\section*{2.4 Other issues}

\subsection*{2.4.1 Addressing the “file drawer problem”}

Beyond reducing the scope for fishing and post-hoc hypothesis adjustment, PAPs can help address the “file drawer problem” (Rosenthal, 1979).19 The file drawer problem refers to the bias in the published literature on a given topic resulting from the tendency for authors not to submit, reviewers not to support, and/or journals not to publish results that fail to reach conventional thresholds of statistical significance.20

Although the root of the file drawer problem lies in disciplinary norms that disfavor null results, pre-registration, and PAPs, can aid in addressing the dilemma. Absent pre-registration, consumers of

\begin{itemize}
\item Consistent with this explanation, the median share of pre-specified hypotheses that were left out of the resulting paper was higher for published articles (25\%) than for working papers (18\%), although this difference is not statistically significant.
\item Consistent with the suspicion that the addition of novel hypotheses might be due to reviewers’ requests, published papers were twelve percentage points (80\%) more likely to report hypotheses that were not pre-registered. However, this result is not statistically significant due to our small sample size.
\item Filing a PAP is not, strictly speaking, necessary to address the file drawer problem. Pre-registration, which involves simply publicly declaring one’s intention to undertake a study that investigates a particular hypothesis, should be sufficient: this is why the AEA registry encourages pre-registration even in the absence of a formal PAP. However, pre-registering a PAP does this and more, so it makes sense to include the contribution to solving the file drawer problem in a discussion of the benefits of PAPs.
\item Although the file drawer problem is commonly assumed only to affect confirmatory and/or quantitative research, Jacobs (2020) shows that it generates strong publication bias in qualitative studies as well.
\end{itemize}
research only have access to the subset of studies that have been published or made publicly available as working papers. Although studies commonly fail to result in publications or working papers for reasons that are uncorrelated with the outcomes that they generated, much evidence suggests that some fail to enter the public realm because they generate null results (Gerber and Malhotra, 2008; Franco, Malhotra and Simonovits, 2014; Andrews and Kasy, 2019). With pre-registration, consumers of research gain access to a record of studies that were initiated but never made public, thus enabling consumers of research to make an educated inference about how likely it is that the findings in the public domain are representative of the underlying distribution of results that have been generated. If social science registries contain dozens of pre-registered studies on a given topic but the literature contains only a handful of publications, then researchers would be right to be skeptical of the published findings.

Whether pre-registration aids in addressing this problem, however, depends on whether researchers actually consult registries to learn whether investigations on a given topic have been undertaken. We asked researchers about this in our potential PAP users’ survey and 38% reported that they had ever consulted a registry for this purpose. Like a tree falling in a forest with nobody nearby to hear it, PAPs—and pre-registration more generally—will do little to reduce the file drawer problem if researchers do not take advantage of the public record that pre-registration provides about what has been done.

Several journals in political science and economics have responded to the file drawer problem by experimenting with “registered reports” in which authors submit PAPs in lieu of finished research papers. Editors and reviewers then evaluate these submissions based on the importance of the questions that motivate the research and the quality of the proposed designs, with strong submissions accepted in principle on the condition that the data is collected and analyzed as proposed.21 Registered reports enhance the probability of publishing null results on questions of theoretical importance and align the

21Journals in psychology and the medical sciences have long run their submission processes in this manner. In political science and economics, journals that have embraced results-free submissions include the Journal of Experimental Political Science, Research and Politics, the Journal of Development Economics, Experimental Economics, and the Japanese Journal of Political Science. A longer list of journals have experimented with special issues that solicited registered reports, even if they have not (yet) adopted the approach as a regular submission option. A full list is available at https://cos.io/rr.
incentives of paper authors and reviewers to present the very best articulation of the theory and the most appropriate empirical tests.

One such experiment in political science, a 2016 special issue of *Comparative Political Studies*, generated mixed reviews. Study authors generally liked the results-free submission and review process (Bush et al., 2018), but the journal editors concluded that the costs outweighed the potential benefits and indicated that they would not be moving toward a registered reports model for the journal writ large (Ansell and Samuels, 2016; Findley et al., 2016). Another experiment, at the *Journal of Development Economics*, appears to have been more positive, although the pilot’s organizers identified a number of challenges, including the difficulty in judging submissions without seeing the final research findings, the up-front costs of composing guidelines for authors and reviewers, and the considerable effort required to guide authors and reviewers them through a novel process that was demanding and “out of their comfort zone” (Foster et al., 2019).

2.4.2 Protecting against research partners with rival interests

Another leading rationale for PAPs is that they can help protect researchers against partners with rival interests. Donors and governments often fund the research activities for which PAPs are written. Like pharmaceutical companies that underwrite research in the medical sciences, these actors may have interests in having the research generate particular conclusions. By providing an opportunity to discuss and agree in advance on both the results that will be reported and the specifications that will be employed to generate them, PAPs can help protect against pressure from such partners to favor particular empirical approaches or findings once the data analysis has begun and the results are becoming clear. Although most researchers in our potential PAP users’ survey indicated that they had not yet used a PAP to protect themselves against a research partner with rival interests, several indicated that they had, and others indicated that they imagined that a PAP could be useful for this purpose.
3 Objections to PAPs

In addition to allowing us to evaluating whether PAPs are delivering on their promise, our data also puts us in a position to address some of the objections to PAPs that have been raised in the literature.\(^{22}\)

3.1 Too time consuming

Foremost among the objections to PAPs is that they are too time-consuming to prepare. Eighty-eight percent of researchers in our potential PAP users’ survey reported devoting a week or more to writing the PAP for a typical project, with 32% reporting spending an average of 2-4 weeks and 26% reporting spending more than a month. It is perhaps not surprising, then, that 34% of researchers said that writing a PAP delayed their project’s implementation. In some situations—for example, when there is a limited window of opportunity to initiate an experiment before an election takes place or a new policy comes into force—such delays can make it impossible to undertake the project at all, and the opportunity can be lost. The time cost of registering and adhering to a PAP may also exclude researchers from less well-resourced institutions who do not have the time, resources, or training to carry out research in the ways that PAPs require.

However, while the potential PAP users we surveyed nearly all agreed that writing a PAP was costly in terms of time, 64% agreed with the statement that “it takes a considerable amount of time, but it is worth it.”\(^{23}\) An overwhelming majority (8 in 10) said that drafting a PAP caused them to discover things about their project that led to refinements in their research protocols and/or data analysis plans. Sixty-five percent said that it put them in a position to receive useful feedback on their project design that they otherwise would not have received. And 52% said that they experienced downstream time savings from having written a PAP, with 64% (so, 33% overall) indicating that these savings were equal to or

\(^{22}\)Useful discussions of objections to PAPs that go beyond the ones discussed here—and that echo several of the challenges articulated by respondents in our potential PAP users’ survey—are provided in Humphreys, De la Sierra and Van der Windt (2013), Coffman and Niederle (2015), Olken (2015), van’t Veer and Giner-Sorolla (2016), Nosek et al. (2018), and Duflo et al. (2020).

\(^{23}\)Six percent said: “it doesn’t take much time, so the cost is low.” Thirty percent said: “it takes a considerable amount of time, and I am not certain of the value in the end.”
greater than the time spent to draft the PAP in the first place. PAPs thus appear to shift the timing of work on research projects from the back end, when the analysis is done, the results are written up, and most of the careful thinking about the project has traditionally taken place, to the front end. But, for at least some researchers, it is not clear that, on net, PAPs generate significantly more work. To the extent that they do, this cost must be weighed against the benefits to research credibility that result from a study whose analyses and hypotheses were pre-registered.

3.2 Limit flexibility and scope for new discoveries

Another major critique of PAPs is that they constrain flexibility to adapt to unanticipated circumstances and limit the scope for new discoveries that come from unrestricted explorations of one’s data. One researcher in our potential PAP users’ survey faulted PAPs for forcing her/him to “think about the lowest risk research I can run with the least potential for surprising findings.” Another described PAPs as “stifling creativity” and worried that they “are being used as ammunition against careful researchers with integrity who genuinely want to learn from data.” Others worry more generally that a mode of inquiry focusing exclusively on the investigation of a narrow set of pre-specified relationships will remove opportunities for understanding relationships between variables, the sensitivity of different empirical tools to different types of data, and other investigations that provide seasoned researchers with the intuitions that set them apart from novices. These are important critiques, but they were outlier views in our users’ survey. Eleven percent of researchers said they thought that the existence of a PAP restricted their ability to fully explore and analyze their data “quite a bit,” whereas 43% reported feeling not at all constrained and 46% reported feeling somewhat constrained. Similarly, 15% said they thought that having registered a PAP prevented them “quite a bit” from stumbling on unexpected, surprise results, whereas 37% reported that the existence of a PAP had not at all prevented them from generating unanticipated findings and 48% reported being somewhat prevented.

24 Yanai and Lercher (2020) demonstrate this point via an experiment in which participants were asked to analyze a fictitious dataset that, if plotted, clearly reveals the image of a gorilla. Half of the participants were given specific hypotheses to test in the data, and the other half were not. The latter, hypothesis-free, participants were five times as likely to discover the gorilla pattern as the participants who were given hypotheses to investigate in advance. The authors explain this result as stemming from blindness due to selective attention, which they characterize as a “hidden cost” of pre-specifying a hypothesis.
One response to the hand-tying generated by pre-specification is to pre-commit to an iterative approach in which the results from one part of the study inform the analysis of subsequent parts in carefully pre-specified ways. Such an approach can be particularly attractive in situations where prior information about the subject of study is limited, making it difficult for researchers to be confident that they are pre-specifying the full set of relevant or interesting hypotheses. While theoretically attractive, such iterative PAPs are tricky to implement in practice. For example, without a neutral gatekeeper, it can be challenging for researchers to document that iterations were truly pre-specified (Bidwell, Casey and Glennerster, 2020).

The more common approach—and the approach we advocate—is to freely undertake exploratory investigations that go beyond the PAP, clearly labeling the results of such investigations in the paper as coming from analyses that were not pre-specified, with an explanation provided for why they were added. Such an approach allows study authors to investigate new hypotheses that occur to them after they have immersed themselves in the data, while offering high transparency about the research process that generated results they report. It also allows researchers to avoid the selective attention trap highlighted by Yanai and Lercher (2020). Pursuing such a strategy faithfully, with findings clearly marked as pre-registered or exploratory and explanations provided for each deviation from the PAP—along with the mandatory reporting, in the body of the paper or the appendices, of every analysis that was pre-specified—might appear to come at the expense of the tight narrative that reviewers and journal editors are thought to favor. However, in an analysis of publication outcomes of experimental NBER working papers that do and do not include PAPs, Ofosu and Posner (2020) find that while papers with PAPs are, in fact, slightly less likely to be published, they are more likely to land in a top-five journal, conditional on being published.

3.3 Policing

By providing a record of the hypotheses a researcher intends to investigate and the analyses she commits herself to employ to test them, a PAP makes it possible for deviations from these pre-specified plans to be identified—but only if reviewers, editors, and/or consumers of the published work invest the considerable

25Examples include Bidwell, Casey and Glennerster (2020) and Blair et al. (2019).
time and energy to track down the PAP and compare it (and, sometimes, its several iterations) side-by-side with the working paper or published article. Laitin (2013) makes the point strongly: “registration without a community of scholars interested and incentivized to challenge findings is worthless.”

Is there any evidence that such policing actually happens? We asked the researchers in our potential PAP users’ survey whether, when they had submitted a paper with pre-registered analyses for review at a journal, reviewers had ever mentioned their PAP. Thirty-nine percent reported that reviewers had. This relatively low share may reflect the fact that only 28% of PAP users said that had ever included their PAP when they submitted their paper to a journal (however, another 50% said that this was because the paper mentioned the PAP and they assumed that reviewers could easily find it). A similar share (35%) said that other researchers had invoked their PAP when discussing their paper outside of the formal review process, or that they themselves had consulted the PAP of a paper they were reviewing (34%). While PAPs may make policing possible, the norms and practices among reviewers, journal editors, and seminar participants seem not to have yet evolved to generate the strong policing equilibrium that would be required for PAPs to play the hand-tying role that is often imagined.

Policing involves not just effort on the part of reviewers, seminar participants, and other consumers of research, but also cooperation from the researcher producers themselves. The willingness of study authors to respond to queries about their work—especially when replication data, survey instruments, or code have not been made publicly available, or when PAPs remain private or gated—are

26 As we have learned in our coding work for this project, this is challenging, time-consuming work—especially, as Bidwell, Casey and Glennerster (2020) emphasize, in the case of complex, iterative pre-specified designs. The unfortunate fact is that innovation to solve one problem (overly rigid designs that make it impossible for researchers to update their approach as they learn from their data) creates problems on another dimension (the difficulty of policing deviations from complicated, iterative PAPs that attempt to provide study authors with such flexibility).

27 Among political scientists, the ability of reviewers to examine a publicly posted PAP is complicated by the double-blind review process employed in most disciplinary journals. To maintain the double-blind standard, authors submitting their PAP for review with their paper would have to submit an anonymized version (which, we note, is in tension with the desirability of having PAPs be public documents).

28 An insightful discussion of policing norms in political science and the challenges of changing them is provided in Laitin and Reich (2017).
essential companions to pre-registration.29 It is therefore noteworthy that only 68\% of the authors whose private/gated PAPs were randomly selected into our sample, and who we contacted to request that they share their PAPs with us, even replied to our email, and only 58\% were willing to share their PAP.30 Given the emerging norms in both economics and political science about the importance of adopting open science practices (Christensen et al., 2019), registering a PAP is taken as a signal of “type.” However, such signals become uninformative if researchers who embrace some open science practices (such as pre-registration) are unwilling to do the (admittedly hard) work of following through when other researchers request additional information.

There is a sentiment in some parts of the PAP users’ community that PAPs offer the worst of both worlds, in the sense that they tie researchers’ hands, preventing them from investigating interesting threads that emerge in their analysis, while still leaving them open to demands from reviewers for endless robustness tests. As one PAP user wrote: “I’ve gotten an absurd number of requests for sensitivity analyses for strictly pre-specified empirical work. The existing norm appears to keep me from looking for unexpected results while providing no protection from readers or reviewers who want to dig through the data trying to kill off empirical results they don’t agree with.” Another expressed frustration with the different expectations of different participants in the review process: “Some reviewers didn’t like when we distinguish between hypotheses that were included in the PAP and those that were not. But other reviewers thought we were trying to hide something when we presented all the results (PAP and non-PAP) together.” Although 46\% of PAP users report having invoked their PAP to respond to the suggestions of reviewers or workshop participants regarding additional analyses to run, one lamented that pointing to the PAP does little good, since “referees and editors ignore them/refuse to be bound by them.” Again, the absence of common norms about what PAPs obligate both producers and consumers of research to do leaves pre-registration well short of achieving its goals.

29For recent evidence on the adoption of such open social science practices, see Christensen et al. (2019).

30Further details of our efforts to contact the authors of private/gated PAPs are provided in the Appendix.
3.4 Getting scooped

We also asked researchers in our potential PAP users’ survey whether, in contemplating registering a PAP, they had any concern that others might scoop their ideas. Forty-six percent reported having no concern whatsoever, with another 39% saying they had slight concern. Eleven percent said that they were unconcerned because the PAP was gated or private. If we assume that preventing others from stealing their ideas was the only reason why these researchers gated their PAPs, then the total share of researchers expressing significant concern about getting scooped is below 15%.

4 The balance sheet

Our stocktaking suggests that PAPs registered during the first six years of the “pre-registration revolution” (Nosek et al., 2018) were often not written or used in a way that allowed them to do everything that their proponents had hoped. Many PAP authors were insufficiently clear about the hypotheses they were testing to prevent them from moving the goal posts once they had seen the patterns in their data. The details of the analyses that PAPs pre-specified—how outcome and causal variables were to be operationalized; which controls would be included; what the statistical model would look like; how imbalances, outliers, and attrition would be dealt with—were not always adequate to reduce researcher degrees of freedom in a meaningful way. In addition, papers that resulted from pre-registered analyses did not always follow what was pre-registered. Some papers introduced entirely novel hypotheses; others presented only a subset of the hypotheses that were pre-registered.

But documenting that not all PAPs adequately addressed all of the problems they were designed to solve does not imply that the growing use of PAPs in political science and economics during this period did not generate more credible research. Figure 3 reports the share of PAPs in our sample that meet what we take to be the four key requirements for a complete, well-specified PAP: specifying a clear hypothesis, specifying the primary dependent and independent/treatment variable(s) sufficiently clearly so as to prevent post-hoc adjustments, and spelling out the precise statistical model to be tested. Just under half of the 195 PAPs we analyzed were judged to meet all four of these criteria, and another third...
were judged to satisfy three of the four.31 Although this is hardly a perfect record, it seems reasonable to view our stocktaking as suggesting that the glass is half full rather than half empty—especially when one recognizes that the counterfactual condition would be a world with no PAPs at all. Even if the scope for fishing and HARKing was not foreclosed by every PAP, such opportunities were limited to at least some degree in most. Even imperfect PAPs increase the credibility of (at least some aspects of) the research studies for which they are written.

Figure 3: Number and share of PAPs satisfying the four key requirements of a complete PAP

Note: Figure 3 shows the number and share of PAPs that satisfy the four key requirements of a complete PAP: 1) specifying a clear hypothesis; 2) specifying the primary dependent variable(s) sufficiently clearly so as to prevent post-hoc adjustments; 3) specifying the treatment or main explanatory variable sufficiently clearly so as to prevent post-hoc adjustments; and 4) spelling out the precise statistical model to be tested including functional forms and estimator.

As PAP skeptics point out, however, these improvements to research credibility came at a price. Writing a PAP occupies weeks of valuable research time, and adhering faithfully to what was pre-specified may limit flexibility and creativity, reduce the scope for new discoveries, and result in research papers that more closely resemble lab reports than the sorts of exciting write-ups that reviewers and

31We investigated whether these results differed across the roughly half of PAPs in our sample from 2016 versus PAPs from earlier years and find no statistically significant differences, suggesting the absence of a trend in improving or declining quality—at least across the six-year period we study.
journal editors are thought to favor—or so critics claim. While the time costs of writing a PAP are real, the alleged constraints on flexibility, creativity and exploration can be loosened by simply labeling one’s investigations as exploratory or confirmatory or by explaining the exigent circumstances that necessitated the departure from what was pre-specified. The concern that adherence to PAPs results in boring, rote papers can be addressed by a combination of better writing and a re-weighting of priorities toward scientific rigor over compelling narrative. Equally important, the data from our potential PAP users’ survey suggest that PAPs do not restrict researchers’ investigations or gum up the research process nearly as much as their detractors claim. On balance, researchers report that the benefits of writing a PAP outweigh the costs. For every researcher who describes PAPs as “an additional hassle” or “toxic to the process of doing research” there is another who says that writing a PAP “makes me more thoughtful and deliberate” or “causes me to really think through design and analysis decisions that, honestly, were often done on the back end.” The cost of writing and adhering to a complete and comprehensive PAP may simply be the price researchers need to pay for making their research more credible.

5 The importance of complementary norms and institutions

Our stocktaking exercise was motivated by a desire to assess the extent to which PAPs, as they are actually written and used, generate meaningful improvements in research credibility. Our strategy for answering this question was to scrutinize whether PAPs were sufficiently clear, precise and comprehensive to prevent fishing and HARKing. However, as we have hinted at several points in the discussion, the impact of PAPs on research credibility may depend less on the contents of the PAPs themselves than on the presence of a set of complementary norms and institutions that provide guidance on how PAPs should be used in the research process and that create incentives for researchers to invest the time and energy to produce and police them.

A first, crucial set of norms speak to what, exactly, a complete PAP should contain and how PAPs should be adapted for observational studies, which comprise the majority of research projects undertaken in political science and economics (Burlig, 2018; Jacobs, 2020). Although several publications provide recommendations for what authors should (and need not) include in their PAPs (McKenzie, 2012; Glemerster and Takavarasha, 2013; Piñeiro and Rosenblatt, 2016; Kern and Gleditsch, 2017; Christensen,
Freese and Miguel, 2019; EGAP, N.d.; Duflo et al., 2020), there are no universally agreed upon rules in either discipline for what a comprehensive PAP should look like. This lack of common standards may account for some of the deficiencies we identified in our coding exercise. Recent innovations such as Declare Design (Blair et al., 2019), which provides software that allows researchers to formally describe (and troubleshoot) the details of their proposed analyses, provide clear templates that may help remedy this problem. But they are new and have yet to become widely adopted.

Alongside clarifying the standards for what PAPs should include, a major issue is the development of norms about how PAPs should be used by the research community. Laitin articulates the problem well when he writes that “all the pre-analysis plans...we produce do not serve science if no one has a career interest in deciphering them or confirming the results that followed from them. We have increased the supply of transparency but have given insufficient attention to generating a demand for it” (Laitin, 2018). Scrutinizing PAPs and comparing their contents to what is reported in the resulting publications and working papers is tedious work, but it is necessary for the credibility-enhancing benefits of PAPs to be fully realized. Creating disciplinary incentives for such policing is a critical challenge.

The most logical venue for such scrutiny is the journal review process. But here too the disciplines lack clear norms. Should researchers be required to submit their PAPs along with their papers? Should reviewers be expected to go through the PAP and certify that the analyses presented in the paper match those that were pre-specified? What should reviewers or editors do if, as we found in many of the PAPs we analyzed, the pre-specification of hypotheses and/or procedures is too unclear or incomplete to remove the scope for fishing or HARKing? Or what if, as in Bidwell, Casey and Glennerster (2020), the PAP was periodically updated during the course of the project, making the task of identifying deviations maddeningly complex? Is it fair for reviewers to ask authors of papers with PAPs to present multiple robustness tests as a condition for acceptance? These and other questions will need to be debated and answered in order to better harness the formal review process to more fully leverage the transparency that PAPs offer.

32 An increasingly common assignment in many graduate seminars in political science is to have students replicate the analyses presented in published studies. Similar assignments could be devised in which students are tasked with comparing published articles or working papers with the PAPs that were registered at the time the projects were initiated. Such efforts could complement the scrutiny provided by formal journal reviews.
While much of the enhanced research credibility generated through pre-registration accrues to the pre-registered studies themselves, some of the benefits depend on the adoption of pre-registration by the discipline as a whole. For example, the role that pre-registration plays in addressing the file drawer problem depends on researchers becoming habituated to consulting study registries for clues about the true distribution of findings in a given area. But such consultations will only be informative if the registries are complete and comprehensive. Bolstering the usefulness of registries as repositories of what has been done will thus require bolstering norms about the necessity of pre-registration.

Convincing researchers who do not currently pre-register their projects to begin doing so (much less convincing them to begin composing and filing formal PAPs) is no easy task, however—especially if standards for the precision and comprehensiveness of PAPs are tightened in the ways we are suggesting then need to be. The recently completed State of Social Science Survey (Christensen et al., 2019) finds that while the majority of researchers in political science and economics are aware of and support the norm of pre-registration, behavior in adopting the practice is significantly lagging. One key obstacle, revealed both in our data and in the evidence summarized in Christensen et al. (2019), is the hesitancy of authors of observational studies to register PAPs. In part, this reluctance stems from the fact that observational data is often available to researchers prior to initiating their projects, which makes it difficult or impossible for them to demonstrate that they composed their PAPs prior to looking at the data. Institutions for embargoing data or involving independent third party actors, along the lines suggested in Bidwell, Casey and Glennerster (2020) and Fafchamps and Labonne (2017), might increase the perceived value of PAPs among researchers using historical or administrative data and lead to their adoption by a broader set of scholars.

Another strategy for increasing the value of PAPs is to invest in institutions and norms that allow the researchers who write them to receive helpful feedback on their study designs. Groups such as EGAP, the Working Group in African Political Economy, and the Northeast Workshop in Empirical Political Science regularly reserve slots at their meetings for the discussion of PAPs, alongside completed working

33 Indeed, some have argued that design registries should be more lenient in terms of standards so as to encourage people to start using them, with standards tightened once the research community buys into the norm of pre-registration more fully.

34 For useful discussions of the challenges of pre-registering observational and qualitative research, see Burlig (2018), Elman, Kapiszewski and Lupia (2018), Christensen, Freese and Miguel (2019), and Jacobs (2020).
papers. Such discussions provide opportunities for receiving comments and suggestions at a key, early stage in a project’s development. The promotion of norms—including within professional associations like APSA and AEA—that make seminar presentations of PAPs equally acceptable as presentations of finished papers would lead to the proliferation of such opportunities. This, in turn, would provide tangible benefits to PAP authors that help to offset the cost of composing the PAP, and thus increase willingness to make such investments in the first place.

Although their use has risen steeply in recent years, PAPs are still in their relative infancy. Our analysis, which covers PAPs registered between 2011 and 2016, captures the early years of PAP usage when many authors were registering their first PAPs and norms about what authors should include in their PAPs and how they should deal with deviations from what they pre-registered were still emerging. Although nearly half of our sample comes from 2016, the final year in this period, we think it is likely that PAPs registered today may be, on average, more precise and complete than those whose contents we analyzed—and that the contribution of PAPs to research credibility today may be even greater than what is suggested by our stocktaking. The further development of norms and complementary institutions that can both augment the power of PAPs to improve research credibility and create incentives for researchers to invest the time and energy to produce and police them will only reinforce these positive trends.
References

Christensen, Garret, Zenan Wang, Elizabeth L. Paluck, Nicholas Swanson, David J. Birke, Edward Miguel and Rebecca Littman. 2019. “Open science practices are on the rise: The state of social science (3S) survey.” Working paper.

EGAP. N.d. “10 things to know about pre-analysis plans.”

Laitin, David D. 2018. “Is there transparency if no one is looking?” The Political Economist (Spring).

Appendix

A Sampling strategy

A total of 1,671 studies were registered on the EGAP (436) and AEA (1,235) registries during the period we studied (see Figure A.1). Of these, 591 had PAPs (322 of the EGAP-registered studies and 269 of the AEA-registered studies). We then identified whether each study had resulted in a publicly available paper. To do this, we conducted web searches of each study author’s web page, as well as key-word searches based on the project’s title and abstract. Of the 591 studies with PAPs, we found 235 that had resulted in a publicly available paper by the time of our search.

Figure A.1: Sampling Procedure

<table>
<thead>
<tr>
<th>Is the study registered</th>
<th>No (N=???)</th>
<th>Yes (N=1,671)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the study have a PAP?</td>
<td>No (N=1,080)</td>
<td>Yes (N=591)</td>
</tr>
<tr>
<td>Is there a publicly available paper?</td>
<td>No (N=356)</td>
<td>Yes (N=235)</td>
</tr>
<tr>
<td>Draw stratified random sample of 100 studies</td>
<td>Draw stratified random sample of 100 studies</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Stratification is by year, initially gated status, and study registry (EGAP and AEA).

1 In addition to the 1,671 registered studies there are, of course, also an unknown number of studies that are not registered at all, and that therefore fall outside the scope of our analysis. We underscore that the absence of these studies in our sample prevents us from making causal claims about the effects of PAPs.

2 The reason for the smaller share of studies with PAPs on the AEA registry is because many of the projects registered there were included to provide a record of the fact that they had been undertaken rather than to pre-register a set of research procedures or hypothesis. To avoid including PAPs written by graduate students as part of a class exercise, we limit our analysis to PAPs written by researchers holding an academic appointment or, if not at an academic institution (i.e., at the World Bank), then holding a PhD.
We then drew a random sample of 100 of these studies, alongside a random sample of 100 studies that had not yet resulted in a publicly available paper. In drawing these samples, we stratified by three criteria: the year the study was registered (2011, 2012, 2013, 2014, 2015, 2016), whether the study was registered on the EGAP or AEA registries, and whether or not the PAP was initially gated/private.

The fact that not all PAPs are made public at the time a study is registered created a challenge for our coding exercise. The AEA registry affords study authors the opportunity to keep their PAPs private and the EGAP registry, while strongly discouraging researchers from doing so, permits study authors to gate their PAP for a period of time.3 As shown in Figure A.2, of the 591 studies with PAPs, 304 were initially private/gate, although 101 of those had become public/ungated by the time we drew our sample in March 2018.

Figure A.2: Dealing with private/gated PAPs

Is the study private/gated?

Initially yes (N=304)
Initially no (N=287)

Yes as of March 2018 (N=203)
No as of March 2018 (N=388)

Do author(s) respond to inquiry about PAP?

No (N=35)
Yes (N=75)

Do author share PAP with us?

No (N=11) Yes (N=64)

Notes: We contacted the authors of 123 studies and can confirm that 110 read our email.

To reach our goal of coding 100 PAPs from projects that had resulted in publicly available papers and another set of 100 that had not, and anticipating that some authors of private/gated PAPs might be unresponsive to our request that they share their PAPs with us, we oversampled 30 percent of private/gated plans in each category. The oversample contained 265 PAPs (132 with papers and 133 without), of which 123 were still private/gated as of March, 2018. We contacted the authors of these private/gated PAPs via 3

3Our suspicion is that the kinds of authors who keep their PAPs private or who gate them for an initial period may be different from those who make them public from the start. Hence our decision to stratify our sample by this criterion.
email to ask them to confidentially share their PAPs with us.⁴ Of the 120 authors who we can confirm received and read our email, we received replies from 75 (68 percent), of which 64 (58 percent) were willing to share their PAP.⁵

Our procedures yielded a sample of 204 PAPs, equally distributed between those with and without publicly available papers. In nine instances, working papers that had been found on authors’ websites at the time we drew our sample were no longer publicly available by the time we began our coding. We therefore coded 93 PAPs with papers, bringing our final sample of coded PAPs to 195. Summary statistics are provided in Online Appendix B.

⁴ A copy of the email, which was sent on April 10, 2018, is provided in Online Appendix A. We sent a reminder email nine days later to authors who had not yet responded.

⁵ Of the 11 study authors who replied to our query but did not share their PAP, five reported that their study was still ongoing and one reported that the study was cancelled. Others reported that there was no PAP (even though the registration suggested there was one) or insisted that they had made the PAP public, even though we were not able to access it.
Online Appendix

Table of Contents

<table>
<thead>
<tr>
<th>A</th>
<th>Email to authors of private/gated PAPs</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Summary statistics</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>Coding rubric for PAPs with papers</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>Potential PAP users’ survey</td>
<td>14</td>
</tr>
</tbody>
</table>
A Email to authors of private/gated PAPs

Dear Author (Dr. XXX),

As part of an ongoing research project on pre-registration and research transparency in the social sciences, we are collecting pre-analysis plans of studies that have been pre-registered on the AEA (socialscienceregistry.org) and EGAP (egap.org) registries. We see that your study, “[study title]” (registration # “[registration number]”) is currently private (or gated), which means that we are unable to view your pre-analysis plan.

We are writing to ask if you would be willing to share your pre-analysis plan with us. We pledge not share it publicly and to use it only for our analysis.

We would very much appreciate receiving your response within the next two weeks. You can send your pre-analysis plan to us as an attachment to PAPstudy2018@gmail.com.

Thank for your help in advance.

Best regards,
B Summary statistics

Table B.1: Summary statistics of population and sample of PAPs

<table>
<thead>
<tr>
<th>Features</th>
<th>Population N=591</th>
<th>Sample (coded) N=195</th>
</tr>
</thead>
<tbody>
<tr>
<td>With publication</td>
<td>0.396</td>
<td>0.477</td>
</tr>
<tr>
<td>Private (gated)</td>
<td>0.514</td>
<td>0.503</td>
</tr>
<tr>
<td>Registry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Economic Association</td>
<td>0.455</td>
<td>0.467</td>
</tr>
<tr>
<td>Evidence in Governance and Politics</td>
<td>0.545</td>
<td>0.533</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>2012</td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>2013</td>
<td>0.071</td>
<td>0.077</td>
</tr>
<tr>
<td>2014</td>
<td>0.149</td>
<td>0.169</td>
</tr>
<tr>
<td>2015</td>
<td>0.299</td>
<td>0.287</td>
</tr>
<tr>
<td>2016</td>
<td>0.465</td>
<td>0.451</td>
</tr>
</tbody>
</table>
C Coding rubric for PAPs with papers
Coding Instrument for PAPs with Papers

Coding Instrument

Study identification

1. Enter PAP code:

2. What kind of study does the PAP describe?
 Mark only one oval.
 - Field experiment
 - Lab experiment
 - Lab-in-field experiment
 - Natural experiment
 - Observational study
 - Other:

Hypotheses

3. Does the PAP specify a clear hypothesis (hypotheses) to be tested? A "clear hypothesis" is one that describes a relationship between a clearly identified independent and dependent variable in which the direction of the effect is specified.
 Note: "providing citizens with information about service delivery will increase political participation" would be coded "yes"
 Mark only one oval.
 - Yes
 - No

4. Does the PAP specify more than one hypothesis to be tested?
 Mark only one oval.
 - Yes
 - No

5. If yes, how many in total?

6. If the PAP specifies more than one hypothesis, are some of the hypotheses designated as primary and some as secondary/exploratory?
 Mark only one oval.
 - Yes
 - No
 - Not applicable (the PAP specifies just one hypothesis)
7. If the PAP distinguishes between primary and secondary/exploratory hypotheses, is this distinction maintained in the paper? (That is, are the primary hypotheses still presented as primary and the secondary hypotheses as secondary, or are some hypotheses that were pre-specified as secondary presented in the paper as primary, and vice versa?)

Mark only one oval.

- Yes
- No
- Not applicable (the PAP specifies just one hypothesis)

8. If the PAP specifies more than one hypothesis, how many are classified as primary?

9. How many of the primary hypotheses that were pre-registered in the PAP are presented in the main body of the paper?

10. How many of the primary hypotheses that were pre-registered in the PAP are presented in the appendix to the paper?

11. How many of the primary hypotheses that were pre-registered in the PAP and are presented in the main body of the paper are supported by the research findings?

12. How many of the primary hypotheses that were pre-registered in the PAP and are presented in the appendix are supported by the research findings?

13. How many of the secondary/exploratory hypotheses that were pre-registered in the PAP and are presented in the main body of the paper?

14. How many of the secondary/exploratory hypotheses that were pre-registered in the PAP and are presented in the appendix of the paper?

15. Are there any results highlighted in the paper based on entirely new hypotheses that were not mentioned in the PAP?

Mark only one oval.

- Yes
- No

16. If yes, do the researchers point out that these analyses were not pre-specified?

Mark only one oval.

- Yes
- No
- Not applicable (no results highlighted in the paper that were not based on pre-specified hypotheses)

Clarity of variable definitions

17. Is (are) the primary dependent variable(s) in the study operationalized sufficiently clearly so as to prevent post-hoc adjustments?

Note: Following Olken, "a good rule of thumb is that if you gave the PAP to two different programmers, and asked each to prepare the data for the primary dependent variable(s), they should be both able to do so without asking any questions, and they should both be able to get the same answer." If multiple primary DVs are specified, code based on whether, in general, they are operationalized clearly. Where some dependent variables are designated as primary, focus only on those.

Mark only one oval.

- Yes
- No

18. Are there any results highlighted in the paper that are based on changes in the operationalization of the primary dependent variable(s) that were pre-specified in the PAP?

Mark only one oval.

- Yes, significant changes that might plausibly affect estimates
- Yes, minor changes that probably do not affect estimates
- No changes in variable operationalization

19. If there are changes in the operationalization of the primary dependent variable(s), do the authors note that they are different from what was pre-specified?

Mark only one oval.

- Yes
- No
- Not applicable (no changes in variable operationalization)

20. Briefly describe these deviations from the PAP with respect to the operationalization of the primary dependent variable(s)

__
__
__
__

https://docs.google.com/forms/d/15BKYdORFeav7zGAJ04BSqonp Db4p8RorlrPj9IF5WLU/edit
21. If secondary/exploratory dependent variables are specified, are they operationalized sufficiently clearly so as to prevent post-hoc adjustments?

Note: Following Olken, "a good rule of thumb is that if you gave the PAP to two different programmers, and asked each to prepare the data for the secondary/exploratory dependent variable(s), they should be both able to do so without asking any questions, and they should both be able to get the same answer."

Mark only one oval.

☐ Yes
☐ No
☐ Not Applicable (secondary/exploratory DVs are not specified in the PAP)

22. Is the treatment or main explanatory variable specified sufficiently clear so as to prevent post-hoc adjustments?

Following Olken, "a good rule of thumb is that if you gave the PAP to two different programmers, and asked each to prepare the data for the treatment/main explanatory variable, they should be both able to do so without asking any questions, and they should both be able to get the same answer."

Mark only one oval.

☐ Yes
☐ No

23. Are there any results highlighted in the paper that are based on changes in the operationalization of the treatment or main explanatory variable that were pre-specified in the PAP?

Mark only one oval.

☐ Yes, significant changes that might plausibly affect estimates
☐ Yes, minor changes that probably do not affect estimates
☐ No changes in variable operationalization

24. If there are changes in the operationalization of the treatment or main explanatory variable, do the authors note that they are different from what was pre-specified?

Mark only one oval.

☐ Yes
☐ No
☐ Not applicable (no changes in variable operationalization)

25. Briefly describe these deviations from the PAP with respect to the operationalization of the treatment or main explanatory variable

__
__
__
__

26. How many control or other independent variables are pre-specified?

__
__
__
__
27. How many of these control or independent variables are specified sufficiently clear so as to prevent post-hoc adjustments?

Sampling and power analysis

28. Does the PAP specify the population of interest and unit of analysis?

 Mark only one oval.

 ☐ Yes
 ☐ No

29. Does the PAP specify the sampling frame?

 Mark only one oval.

 ☐ Yes
 ☐ No

30. Does the PAP specify the sampling strategy?

 Mark only one oval.

 ☐ Yes
 ☐ No

31. Does the PAP specify the conditions under which participants/units may be excluded from the sample?

 Mark only one oval.

 ☐ Yes
 ☐ No

32. Does the PAP use a power analysis to justify the sample size required for the study?

 Mark only one oval.

 ☐ Yes
 ☐ No

Data collection

33. Is the treatment/main independent variable under the control of (randomized by) the researchers?

 Mark only one oval.

 ☐ Yes
 ☐ No

34. If yes, does the PAP specify how participants/units will be assigned to treatment (i.e., the randomization procedure)?

 Mark only one oval.

 ☐ Yes
 ☐ No
 ☐ Not Applicable (treatment is not controlled by researcher)
35. **Does the PAP specify a manipulation check (i.e. variables to report in a balance table)?**

 Mark only one oval.

 - [] Yes
 - [] No

36. **If yes, does the PAP specify what to do in the event of an imbalance?**

 Mark only one oval.

 - [] Yes
 - [] No
 - [] Not Applicable (PAP does not specify a manipulation check)

Inclusion and exclusion rules

37. **Does the PAP specify rules on how to handle missing values and attrition?**

 Mark only one oval.

 - [] Yes
 - [] No

38. **Does the paper follow the pre-specified protocols with respect to missing values and attrition?**

 Mark only one oval.

 - [] Yes
 - [] No
 - [] Not applicable

39. **Does the PAP specify rules for dealing with outliers?**

 Mark only one oval.

 - [] Yes
 - [] No

40. **Does the paper follow the pre-specified protocols with respect to dealing with outliers?**

 Mark only one oval.

 - [] Yes
 - [] No
 - [] Not applicable

41. **Does the PAP specify rules for dealing with noncompliance?**

 Mark only one oval.

 - [] Yes
 - [] No
 - [] Not applicable (noncompliance is not an issue in the study)
42. Does the paper follow the pre-specified protocols with respect to noncompliance?
Mark only one oval.

- Yes
- No
- Not applicable

Statistical model specification

43. Does the PAP spell out the precise statistical model to be tested including functional forms and estimator (ordinary least squares, probit, logit, Poisson, instrumental variables, and so on)?
Mark only one oval.

- Yes
- No

44. Are the results presented in the paper based on the exact model specifications that were pre-specified?
Mark only one oval.

- Yes
- No, minor deviations from pre-registered specifications that probably do not affect estimates
- No, minor deviations from pre-registered specifications that might plausibly affect estimates
- No, major deviations from pre-registered specifications

45. If there are deviations from the pre-registered model specifications, do the authors point out that the specifications they use are different from what was pre-registered?
Mark only one oval.

- Yes
- No

46. Briefly describe these deviations from the PAP with respect to model specifications.

47. Does the PAP state how standard errors will be treated (robust, clustering, bootstrapping, or other techniques)?
Mark only one oval.

- Yes
- No
48. Does the PAP specify a multiple testing adjustment?
 Mark only one oval.
 ☐ Yes
 ☐ No
 ☐ Not Applicable (too few DVs for a multiple testing adjustment to be necessary)

49. Does the PAP commit the researchers to presenting a simple difference-in-means test?
 Mark only one oval.
 ☐ Yes
 ☐ No

50. If yes, do the authors specify whether the test will be one-tailed or two-tailed?
 Mark only one oval.
 ☐ Yes
 ☐ No
 ☐ Not applicable (no difference-in-means test is specified)

51. Does the PAP specify whether/how covariates (including fixed effects) will be included in the regression model?
 Mark only one oval.
 ☐ Yes
 ☐ No

Other features

52. When was the PAP initially registered?
 Mark only one oval.
 ☐ Prior to data collection
 ☐ After data collection but before authors had access to/analyzed data
 ☐ After analysis of data had begun
 ☐ Other: ________________________________

53. Was the PAP ever gated/private?
 Mark only one oval.
 ☐ Yes
 ☐ No

54. Was the PAP ever updated/refiled?
 Mark only one oval.
 ☐ Yes
 ☐ No
55. If the PAP was updated/refiled, how many updates were registered?
 Mark only one oval.
 - One
 - Two
 - Three or more
 - Not applicable (PAP never updated)

56. If the PAP was updated/refiled, were the updates clearly identified as changes from the original PAP?
 Mark only one oval.
 - Yes
 - No
 - Not Applicable (PAP never updated)

57. Does the PAP specify that the study has received IRB approval (or that such approval is pending)?
 Mark only one oval.
 - Yes
 - No
 - Not Applicable (IRB approval is not necessary for a study of this type)

58. Do authors pre-specify what will guide their decisions when issues arise that were not anticipated in the PAP (i.e., the SOPs described in Lin and Green 2015)?
 Mark only one oval.
 - Yes
 - No

59. How many pages long is the PAP (in single-spaced pages)?
 Note: Divide double-spaced documents by two.

60. Do the authors provide a link to their replication data in the paper?
 Note: Divide double-spaced documents by two.
 Mark only one oval.
 - Yes, a link is provided and it works
 - Yes, a link is provided but it does not work
 - Authors indicate that the replication data is "available on request"
 - No mention of replication data

61. Do the authors provide a link to their do files in the paper?
 Note: Divide double-spaced documents by two.
 Mark only one oval.
 - Yes, a link is provided and it works
 - Yes, a link is provided but it does not work
 - Authors indicate that the do files are "available on request"
 - No mention of the do files

https://docs.google.com/forms/d/15BKYdORSFeav7zGAJ04BsqonpDb4p8Ro6rPj9IF5WLU/edit
62. **Do the authors make available their data collection instruments and/or lab protocols?**

Note: Divide double-spaced documents by two.
Mark only one oval.

- [] Yes, they are provided in an appendix (including an online appendix)
- [] Authors indicate that these materials are "available on request"
- [] No mention is made of these materials
D Potential PAP users’ survey
Pre-analysis plans survey

Survey Flow

<table>
<thead>
<tr>
<th>Standard: Introduction (1 Question)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block: Pre-registration practice (13 Questions)</td>
</tr>
<tr>
<td>Standard: PAPs in the paper writing process (4 Questions)</td>
</tr>
<tr>
<td>Standard: PAPs in the review process (6 Questions)</td>
</tr>
<tr>
<td>Standard: Open-ended questions (5 Questions)</td>
</tr>
</tbody>
</table>
We thank you for your participation. The survey will take only 5-10 minutes to complete. Please, feel free to skip any questions that you prefer not to answer.

Q2.1 Have you ever registered a pre-analysis plan (PAP) for a research project?

- Yes (1)
- No (2)

Display This Question:

If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q32 How many PAPs have you registered?

- 1-2 (1)
- 3-4 (2)
- 5 or more (3)

Display This Question:

If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q2.2 Have you ever kept one or more of your PAPs gated/private for a period of time?

- Yes (1)
- No (2)
Q2.3 Do you have any ongoing research projects for which you did not register a PAP?

- Yes (1)
- No (2)

Q2.4 How many?

- 1-2 (1)
- 3-4 (2)
- 5 or more (3)

Q2.5 In contemplating registering a PAP, did you have any concern that others might scoop your ideas?

- No concern whatsoever (1)
- Slight concern (2)
- Significant concern (3)
- The PAP was gated (4)
Q2.6 How long does it take you to draft a PAP for a typical project?

- A few days (1)
- About a week (2)
- 2-4 weeks (3)
- More than a month (4)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q2.7 Did writing the PAP cause you to discover anything about your project that led to refinements in your research protocols and/or data analysis plans?

- Yes (1)
- No (2)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q2.8 Did writing the PAP put you in a position to receive useful feedback on your project design that you might not otherwise have received?

- Yes (1)
- No (2)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes
Q2.9 Did writing the PAP delay the implementation of your project?

- Yes (1)
- No (2)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q2.10 Did you experience any downstream time savings from having written a PAP?

- Yes (1)
- No (2)

Display This Question:
If Did you experience any downstream time savings from having written a PAP? = Yes

Q2.11 Were these downstream time savings greater than the time spent to draft the PAP in the first place?

- Yes (1)
- No (2)
- About equal (3)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes
Q2.12 Which of the following best characterizes your feelings about the time it takes to write and register a PAP?

- It doesn’t take much time, so the cost is low. (1)
- It takes a considerable amount of time, but it is worth it. (2)
- It takes a considerable amount of time, and I am not certain of the value in the end. (3)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q3.1 To what extent do you think the existence of a PAP restricted your ability to fully explore and analyze your data?

- Not at all (1)
- Somewhat (2)
- Quite a bit (3)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q3.2 To what extent do you think the existence of a PAP made it more difficult to write a theoretically interesting paper?

- Not at all (1)
- Somewhat (2)
- Quite a bit (3)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes
Q3.3 To what extent do you think the existence of a PAP prevented you from stumbling on unexpected, surprise results?

- Not at all (1)
- Somewhat (2)
- Quite a bit (3)
- Don’t know (4)

Q3.4 Have you ever consulted a registry (EGAP, AEA) to learn whether studies on a particular research topic have ever been initiated?

- Yes (1)
- No (2)

End of Block: PAPs in the paper writing process

Start of Block: PAPs in the review process

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q4.1 Have you ever included a PAP with a paper you have submitted to a journal?

- Yes (1)
- No (2)
- No, but the paper mentions the PAP and I have assumed that reviewers could easily find it (3)

Display This Question:
If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes
Q4.2 When you have submitted a pre-registered paper for publication, have reviewers ever mentioned your PAP?

- Yes (1)
- No (2)

Display This Question:

If When you have submitted a pre-registered paper for publication, have reviewers ever mentioned you... = Yes

Q4.3 Did they (please choose all that apply):

- compare pre-specified hypotheses with those presented in the main paper? (1)
- compare pre-specified variable definitions with those presented in the main paper? (2)
- compare pre-specified inclusion of control variables with those presented in the main paper? (3)
- refer to the PAP for some other reason (Please specify) (4)

Display This Question:

If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q4.4 Have you ever invoked your PAP to respond to the suggestions of reviewers or workshop participants regarding additional analyses to run?

- Yes (1)
- No (2)
Q4.5 As a reviewer, have you ever consulted the PAP of a paper you are reviewing for a journal?

- Yes (1)
- No (2)

Display This Question:

If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q4.6 Outside of the formal review process at a journal, has another researcher ever invoked your PAP when discussing your paper?

- Yes (1)
- No (2)

End of Block: PAPs in the review process

Start of Block: Open-ended questions

Display This Question:

If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q5.1 Thinking back to the part of your scholarly career before you began regularly pre-registering your studies, how, if at all, has preregistration changed the way you conduct research? (Please write your response in the box below. You can write as much or as little as you want).

__

Display This Question:

If Have you ever registered a pre-analysis plan (PAP) for a research project? = Yes

Q5.2 If you answered earlier that you have ongoing research studies for which you have not registered a PAP, what was it about those studies that made you decide that pre-registration was not necessary? (Please write your response in the box below. You can write as much or as little as you want).

__
Q5.3 How have you dealt in your research papers with deviations from what you pre-registered in your PAP? *(Please write your response in the box below. You can write as much or as little as you want).*

__

Q5.4 Has pre-registration ever been helpful for dealing with implementing partners or funders? If so, how? *(Please write your response in the box below. You can write as much or as little as you want).*

__

Q5.5 Have your views on pre-registration changed over time? If so, how? *(Please write your response in the box below. You can write as much or as little as you want).*

__

End of Block: Open-ended questions